
Dealing with False Positives and
False Negatives in Mobile App Test Automation

INTRODUCTION 03

ABSTRACT 04

UNDERSTANDING FALSE POSITIVES AND
FALSE NEGATIVES IN MOBILE APP TEST AUTOMATION

05

AVOIDING FALSE POSITIVES AND FALSE NEGATIVES
IN MOBILE APP TEST AUTOMATION

08

CONCLUSION 11

Dealing with False Positives and False Negatives in Mobile App Test Automation

PAGE 03 / 11

INTRODUCTION
In the digital space, speed and accuracy are two non-negotiable pillars. A crack in any one of these pillars puts the

app in danger and can even be fatal. Where apps are concerned and more so in the mobile app world, users are

spoilt for choices! Hence every app has to ensure superior user experience and keep abreast of the rapid digital

innovations that are constantly striving to cater to ever-changing user preferences. The 'Go-to-Market' race is

also foremost in the agenda of every mobile app developer and tester – be it a new app or an existing app's

frequent updates. In this scenario, mobile app development and testing have to heavily depend on automation,

as the development and testing demands are far beyond the best of human capabilities. Automation in any area

has tremendous benefits but also comes with problems of its own, and automated mobile app testing is no

exception.

One of the major concerns in automated mobile app testing is the false or erroneous results that are sometimes

generated. These erroneous results could be False Positives or False Negatives. A False Positive is a test result

that indicates that there is an error when in reality there is none. A False Negative is a test result that indicates

that the software is fine, although in reality there are bugs and glitches. Both these spell bad news for mobile app

testers, with False Negatives being the greater evil.

This whitepaper seeks to address this vexing problem faced by mobile app testers and will explore ways in which

to contain or reduce the possibilities of both False Positives and False Negatives.

Dealing with False Positives and False Negatives in Mobile App Test Automation

PAGE 04 / 11

In the area of mobile apps, automated tests are meant to detect errors and bugs, and ensure that the

app is thoroughly verified. Automation is an absolute necessity in today's digital world but

unfortunately automated testing comes with its share of problems that surface as False Positives and

False Negatives.

In mobile app testing, a positive result is meant to indicate the existence of a bug or error in the

software and a negative result implies that the test detected no bug, which in turn conveys that the

mobile app is working fine. However, at times the automated test outcomes can be False Positives or

False Negatives. False Positives result in a waste of precious time, chasing errors that don't exist. A False

Negative on the other hand, is more dangerous, as it clears the software of the mobile app for

deployment even though there are errors in it.

This whitepaper will throw light on this worrisome issue by reviewing it in two parts.

The first part is titled Understanding False Positives and False Negatives in Mobile App Test Automation

and will explore what False Positives and False Negatives are, why they occur, and the implication of

these false errors for mobile app testers.

While false automated test errors can be quite unnerving, abandoning automation is definitely not an

option, given the fast paced digital environment. Hence it is important to work towards avoiding or at

least reducing these false results. This is the purpose of the second part of this whitepaper which is

titled Avoiding False Positives and False Negatives in Mobile App Test Automation.

It is hoped that what follows will help the reader reduce erroneous test results and generate a higher

degree of confidence in automated mobile app testing.

ABSTRACT

Dealing with False Positives and False Negatives in Mobile App Test Automation

PAGE 05 / 11

UNDERSTANDING FALSE POSITIVES
AND FALSE NEGATIVES

IN MOBILE APP TEST AUTOMATION

The first step in addressing any issue is to understand it in all its aspects.

Automated mobile app tests are blindly trusted and hence the results are taken at face value and

necessary actions follow. It would naturally be considered unnecessary and a waste of time to check

whether automated results are right or not. This is neither expected nor desired of testers, given the

severe time constraints. However, the fact is that automated tests do give false results at times and

these are classified as False Positives and False Negatives. This section seeks to help the reader

understand what False Positives and False Negatives are; why they occur; and their implications.

Let's begin with the lesser of the two evils – False Positives. As mentioned earlier, a False Positive in test

automation is a test result which indicates that there is a problem in the mobile app software, although

there is none. These are test events that fail despite there being no defect in the mobile app under

consideration. In fact, the test itself may be the problem, but it gives an impression that the app is

defective. Some of the reasons for these occurrences are as follows:

Dealing with False Positives and False Negatives in Mobile App Test Automation

• Change in code or product functionality; automation approach; written automation script; or

implemented framework.

• Changes in identifiers which are the ways in which the tool connects to a specific UI element. E.g. If

the submit button is inserted inside three HTML division markers, then inside a pre tag, then the 2nd

division marker, and the structure of the page changes, then the code will no longer be able to find

that element and it will show up as a False Positive.

• Changes in information required in the mobile app. E.g. If earlier, country field was mandatory and

in the new form it is removed as it is no longer relevant, then on automation clicking submit

without filling in the new form, it will show up as an error although it's not so in the new scenario.

PAGE 06 / 11

Dealing with False Positives and False Negatives in Mobile App Test Automation

• Changes in workflow. E.g. Changes in a tab or button, or introduction of a new page on a wizard.•

No appropriate waiting may be actualized for a question before the test interfaces with it.

• The test data may be incorrect i.e. the test may be defined for a data field that does not exist in the

mobile app. E.g. the app may not have a field for middle name, but the test has been defined to

ensure that first name, middle name and last name are mandatorily displayed.

On the face of it False Positives seem harmless, because they are not defects in reality. But the fact is

that precious time and money are wasted by sending testers on a wild goose chase in trying to get to

the root cause and fix errors that do not exist. The cause of the False Positive is an inadequately

composed test. However, since automation is expected to give right results, testers are bound to dig

deeper and identify the root cause of the error. Unfortunately they end up uselessly analyzing the

mobile app software, and their efforts come to naught. Besides unproductive time and money spent,

False Positives can also be very frustrating for testers as the build procedure and deployment are

unnecessarily slowed down, which in turn extends the go-to-market time.

False Negatives are test executions that show that there are no defects, although the mobile app has

bugs. This can be extremely dangerous as it generates false confidence in the app. The mobile app

software will move through successive stages in the SDLC, happily presuming all is well because the

automated test says so. This could badly backfire when the bug is discovered late in the SDLC or worse

still when the mobile app has been launched in the market.

Some of the reasons for False Negatives or False Pass rates are as follows:

• Non-coverage of a feature.

• Difficulty in setting up a scenario and therefore ignoring it.

• Lack of co-ordination between mobile app testers.

• Arrival of the automation tool after the codebase resulting in tests being created for the changes

and not for the original functionality.

• Missing Assertions in the test i.e. the parameters needed to verify that the features give the right

results were never created.

• The initial state of the database is incorrect.

• Issues related to test environment setting, the browser, or the network.

When the number of false errors is high, confidence in automated results gets shaken and there may be

a temptation to ignore these errors or even abandon automated testing. But neither of these is a good

option. Let's take a simple analogy that is universally fresh in the minds of everyone, to understand the

need for going ahead with mobile app test automation, despite the false errors that show up.

PAGE 07 / 11

Dealing with False Positives and False Negatives in Mobile App Test Automation

The recent pandemic brought increased amount of testing, albeit in the medical field. Tests and testing

kits were hurriedly put in place; vaccines were feverishly explored and invented in laboratories across

the world. The approach to contain the pandemic was two-pronged: Widespread Testing to isolate the

infected and slow down the spread of the virus; Widespread Vaccination to build immunities to fight

the virus. There was a tearing need for testing kits and vaccines to contain the pandemic, but there

were also commercial reasons to get to the market before competitors and make up the millions of

dollars spent in medical research!

Were all the results true and correct? – Definitely not. Were all the vaccines safe and 100% effective?

Again the answer is a resounding NO! Did that stop the testing and vaccination drive? NO – again! Was

the drive effective? The answer this time is thankfully YES, because two years down the line the world is

bouncing back to normalcy.

Something similar happens in the mobile app testing world. Automation is mandatory to cope with the

speed that drives the digital world. True, automation does generate some False Positives and False

Negatives – these are its uninvited by-products. But then discarding automation would amount to

throwing the baby out with the bathwater! After all manual testing is not an option in this fast paced

digital world, no matter how efficient and meticulous the manual tester may be. Drawing from the

analogy – Discarding automation would be like discarding the Covid testing and vaccination drive

because there were some false results and adverse vaccine effects. But that would have meant letting

the virus spread and wreak exponentially more havoc than the false results and side effects!

While striving for perfection in the digital world is important, there is also a practical need to weigh

options vis-à-vis the pros and cons; make decisions based on the path of least impairment; and

simultaneously work towards refining systems.

AVOIDING FALSE POSITIVES AND
FALSE NEGATIVES IN MOBILE APP

TEST AUTOMATION
The previous section has clearly established the need for embracing automation in mobile app testing

despite the possibility of false results. However, in the digital world there's no room for complacency

and hence every effort must be made to avoid or at least reduce false results. This section will provide

some guidelines on how to avoid False Positives and False Negatives in mobile app testing.

Dealing with False Positives and False Negatives in Mobile App Test Automation

While majority of the tests will be automated, it is important to avoid automation for areas that are

unstable or have frequent UI changes. It is also advisable to avoid scenarios that are not supported by

the automation tool being used. Automation should be avoided in areas which have been identified to

have performance issues and also areas which cannot be identified using unique locators.

Decide the Type of Tests to be Automated01

A review of the structure of the test script, workflow, and tear down fixture should be done, to ensure

that the script contains only the relevant strips and verifications points, so that test cases have a 1:1

mapping. Best coding practices, commenting and naming conventions should be followed and

hardcoding of data should be avoided.

Ensure that the Automated Test is Well Written02

To reduce False Positives in mobile app testing, it is important to ensure that the environment is

controlled and is only accessible by automated test cases. This avoids constant changes in data which

prevent reproducing problems detected by the tests.

Set up a Controlled Testing Environment 03

Highly customized Frameworks and Libraries lack the advantage of widespread usage. Tried and tested

mobile app testing systems have lesser chances of unidentified errors as their widespread usage

speeds up error identification and rectification.

Set up a Controlled Testing Environment 04

PAGE 08 / 11

Dealing with False Positives and False Negatives in Mobile App Test Automation

Dynamic Synchronization is the process of waiting for a specific amount of time for the target element

to become available for the automation event. It helps in improving the time of execution by ensuring

wait time only when the element is not available. Dynamic waits are superior to static waits as they

ensure that the wait is not so long that tests become unnecessarily lengthy; nor so short that

rendering isn't finished. Insufficient wait time can generate false results.

 Use Dynamic Synchronization of Objects05

Test data setup can change the basic scenario and lead to false positives e.g. If the setup is defined for

use by a person with Admin rights, but a guest logs in, it will break the test flow resulting in false

positives.

 Check Mobile App Test Data Setup06

Segregating these methods makes the test suites more stable by permitting uniformity in the setup

method. Moving the setup to a common place increases reusability of the code. Problems with the set

up like launching a browser, passing desired capabilities, setting resolution, and other such issues will

then need to be fixed only in one place. This saves time in case of false results.

 Move the Setup Methods out of the Test Methods07

Peer code reviews can make the script robust and help identify or reduce false positives in mobile app

testing. The review should be done by a person with good understanding of the product and its

underlying functional changes; with good working knowledge of the language in which the framework

and scripts are developed, so that the script can be modified with functional knowledge.

 Ensure Frequent Peer Code Reviews08

Mobile app tests should always be relevant to the existing program, since redundant coverage results

in false positives.

 Keep Test Assertions and Coverage Concurrent09

In case of Identifiers, it is advisable that every button and textbox has a unique identifier or named

element in HTML, in order to reduce false positives in mobile app testing. Using accessibility hooks, such

as alt tags, has the advantage of increasing accessibility.

 Use Unique Identifiers10

PAGE 09 / 11

Dealing with False Positives and False Negatives in Mobile App Test Automation

When internationalizing HTML IDs, the ID name changes as per the region's communication language.

Though users are not negatively impacted, it can be a reason for mobile app test automation to throw

up false results, if abundant caution is not exercised.

Apply Caution when Internationalizing HTML IDs11

Complex logic in the code increases the chances of things going wrong. Hence it is preferable to keep

the automated mobile app tests simple, more so because the test code is untested.

 Minimize Logic in the Code12

Mutation testing consists of changing the code, inserting an intentional bug or error in the mobile app

software and then running the test responsible for detecting the bug. If the test passes it implies that

the result is a false negative. It is of course not practical to prepare every error, compile it, deploy it, and

verify whether the test finds the fault. But mutation testing can be achieved by varying the data of the

test or altering different aspects or parameters. Practicing mutation testing before committing the

code for a feature or a bug fix can go a long way in reducing false negatives.

 Practice Mutation Testing13

It is also suggested that any change in source code should be checked to ensure that it automatically

triggers a review of the companion test cases. This will help prevent false negatives due to refactoring.

 Ensure Triggers for Companion Tests14

It is very important that false positives and false negatives in mobile app testing are not just addressed

and forgotten. Getting to the root cause and maintaining a record for future review is vital. If the

frequency and intensity of these false errors are high, it is advisable to review test automation –

perhaps a test or two a day until all assertions are cleaned up.

 Audit the Failures15

If after best efforts false results do occur, here are some pointers to find out why things went wrong:

• Check whether the test data was off-base.

• Check whether an element's functionality changed.

• Check if there was a change in the functionality of the code.

• Analyze whether the necessities were doubtful or whether they changed.

• Separate the test cases to see where things went wrong.

PAGE 10 / 11

Automation is an inevitable part of the digital world and consequently of mobile app testing too. While the

benefits of automation are immense, there is no denying that results could sometimes be false. False Positives

can be a costly drain on time and resources and hence can be very frustrating for mobile app testers who are

already struggling with limited testing time. But False Negatives are what testers fear the most, because it

undermines their capabilities and shakes their confidence in automated mobile app testing.

Despite these risks, testers are left with no choice but to go ahead with test automation. Hence utmost care

needs to be exercised to avoid False Positives and False Negatives. These false results should not just be dealt

with for resolving the current problem, but in order to have a robust mobile app testing program, it is imperative

to record, review, analyze and audit the false results from time to time. If need be, a test a day should be reviewed

until all assertions are cleaned up. This will go a long way in reducing the future stress of testers and building

confidence in the automated mobile app test results. Opting for a well-established automated framework that is

meticulously tried and tested will greatly help avoid False Positives and False Negatives in app testing.

For Mobile App Testing, BOTm is a good error free automated framework that keeps abreast with the latest in

technology. It provides mobile app testing for the entire spectrum under one umbrella. Visit

www.botmtesting.com and sign up for a Free Trial to experience stress-free mobile app testing.

CONCLUSION

022 4050 8200

GET IN TOUCH

www.botmtesting.comsales@botmtesting.com

BOTm is the accelerator BOT for automated and manual testing ofmobile applications -

developed for both Android and iOS devices.

PAGE 11 / 11

Dealing with False Positives and False Negatives in Mobile App Test Automation

