
OPTIMIZING TEST COVERAGE

INTRODUCTION 02

ABSTRACT 03

TEST COVERAGE – AN OVERVIEW

OPTIMIZING TEST COVERAGE WHILE MINIMIZING TIME

04

07

CONCLUSION 12

OPTIMIZING TEST COVERAGE

INTRODUCTION
The software world is a paradoxical one, and balancing the paradoxes can be quite a tightrope walk. On

one hand is the non-negotiable demand for ‘Superior User Experience’ which necessitates incorporating

fast paced digital innovations and ensuring they work perfectly – to consistently satiate changing user

preferences. On the other hand is the all-important ‘Go-to-market Race’, which leaves extremely

crunched time for coping with the fast changing digital landscape. This enigma, often leads to testing

being sacri�ced on the altar of time. Unfortunately, it can prove extremely detrimental to the app, as an

insuf�ciently tested app is a ticking time-bomb waiting to explode and decimate the goal of superior user

experience.

It is in this scenario that Optimizing Test Coverage gains importance, as it is geared to help QA

professionals improve the quality of test cases to ensure there are no gaps in meeting testing goals. Test

Coverage which de�nes what percentage of application code is tested and whether the test cases cover

all the codes, thus becomes a vital yardstick to qualitatively gauge the quantum of testing met by a set of

tests. It also provides valuable information on adequate coverage of all testing requirements, which

becomes the bedrock for launching apps and releasing updates with con�dence.

Given the fact that the fast paced digital world is here to stay, this Whitepaper aims at helping QA

professionals master the tightrope walk, by providing constructive insights into how to optimize test

coverage and meet the twin testing goals of ‘Superior User Experience’ and ‘Faster Go-to-market Time’.

PAGE 02 / 12

OPTIMIZING TEST COVERAGE

ABSTRACT

PAGE 03 / 12

Optimizing Test Coverage is an important step in the direction of app success, and consequently a means

to promoting the interests of stakeholders, as it seeks to validate the adequacy of testing.

It is hoped that the insights gained will help create

well tested apps that are winners in the ‘User

Satisfaction contest’, thus gaining market

supremacy – to bene�t all stakeholders.

This Whitepaper unravels how test coverage can be optimized and reviews
it in two sections:

• Test Coverage – An Overview

• Optimizing Test Coverage while Minimizing Time

The �rst section ‘Test Coverage – An Overview’ presents an understanding
of what test coverage is about and covers the following topics:

• Types of Test Coverage

• The Various Nuances of Test Coverage

• Calculating Test Coverage

• Advantages of Test Coverage for the Project

The second section ‘Optimizing Test Coverage while Minimizing Time’ explores
the following:

1. The Test Plan

 • Code Coverage

 • Data Focused Coverage

 • Platform Related Coverage

2. Test Coverage Optimization

 • Strategies for Effective Test Coverage

 • Guidelines for Ef�cient Test Coverage Optimization

 • Techniques for Optimizing Testing Time

OPTIMIZING TEST COVERAGE

PAGE 04 / 12

TEST COVERAGE – AN OVERVIEW

The starting point of implementing any good concept is to understand it in all its nuances, and this

is true for optimizing test coverage too. Test Coverage is basically an indicator which helps deter-

mine how much testing is done and whether it is qualitatively adequate. It is the amount of testing

done on a speci�ed set of requirements.

This can be better understood by an example. A smart-watch, which is perfectly tested to guaran-

tee precise display of time; �tness parameters; and mobile phone functions; and also tested for

weather conditions and sturdiness; is still not adequately tested until it’s strap is tested for durabili-

ty, �exibility, and comfortable �t on various wrist sizes. A smart-watch with topnotch mechanism

but a poorly designed strap is bound to back�re on the customer satisfaction scale. Undoubtedly,

test coverage of core functions are extremely critical, yet even the non-core requirements of the

product need relevant testing to make it a winner in the market space.

Coming to software testing, it is vital that Test Coverage must include requirements like installa-

tion, con�guration, performance, speed, security, safety, etc.; and that these are thoroughly tested

before the app’s go-live. For app success, Test Coverage must cover all that’s necessary for users’

expectations to be satisfactorily met under varying situations and environments.

To get a better understanding of Test Coverage, it is important to distinguish it from Code Cover-

age. Code Coverage refers to unit testing processes done by developers to ensure that all areas of

the code are covered at least once. Test Coverage, however, is done by the QA team and focuses on

testing every covered requirement at least once. It is the team that decides what’s important and

necessary to be deemed as a covered requirement.

OPTIMIZING TEST COVERAGE

PAGE 05 / 12

Types of Test Coverage01

Functional Coverage

As the name suggests, Functional Coverage quanti�es the degree to which tests cover the functional

requirements of the software. It aims at con�rming that all relevant conditions have been tested to

ensure that the software performs as per expectations. Another concept that needs attention here

is Branch Coverage, which quanti�es the number of branches in the code that have been tested.

Smoke Testing, Unit Testing, and Database Testing are all types of Functional Testing.

Non-Functional Coverage

Non-functional coverage measures the degree to which non-functional elements have been tested

and indicates the percentage of the type/s of the elements being covered. E.g. For a mobile app,

using traceability between tests and supported devices, the rate of devices that are dealt with by

Compatibility Testing can be calculated, making it possible to detect coverage gaps. Examples of

Non-functional Testing are – Performance Testing, Usability Testing, and Volume Testing which relate

to behavioral features of the system.

It can be deduced that non-functional testing is designed to test the app’s preparedness, for

variables that were not part of the functional testing coverage.

Test Coverage can be broadly classi�ed into two categories viz. Functional Coverage, and Non-func-

tional Coverage.

The Various Nuances of Test Coverage02

Product Coverage

Product Coverage will help determine the areas of the product that have been tested and those that

are not tested. As seen earlier, in the smart-watch example, there are various core and non-core,

technical and non-technical aspects that need to be tested. Product Coverage will provide valuable

information about the extent and adequacy of product testing done. When testing apps, while the

app’s overall functioning is a given for product testing, it’s also important to test how the app

functions when used in conjunction with other apps; to ensure that an uncommon activity doesn’t

trigger app failure; that relevant error and alert messages provide timely warning to users; that the

app is easy to maneuver and understand; that the help menu is easily accessible, useful, simpli�ed

and clear. These are areas that may tend to be overlooked when time is of essence, but this can prove

detrimental to the app and to the goal of superior user experience.

Risk Coverage

Risk Coverage is another important component of Test Coverage as it measures gaps in the testing

of the safety and security aspects of the app, which are vital given that apps contain sensitive user

information. For Mobile Apps, some of the major security risks that need QA attention are:

inadequate API protection; vulnerable server controls; insuf�cient load testing; client-side injections;

risky sensitive data storage protocols; hardcoded password or keys; poor source code security;

Test Coverage can be broadly classi�ed into two categories viz. Functional Coverage, and

Non-functional Coverage.

OPTIMIZING TEST COVERAGE

PAGE 06 / 12

To evaluate Test Coverage, the following formula can be used:

Test Coverage = No. of Test Cases Executed * 100/Total No. of Test Cases

However, it’s also important to know when to calculate coverage, because doing it too early in the

process, will result in many gaps, as things are incomplete. Ideally the calculation should be done

after the Last Build i.e. Final Regression Build, to get a correct coverage of the tests performed for the

given requirements.

For proactive implementation of any concept, it’s important to understand how useful and bene�cial

it is. Hence, here’s a peek into how Test Coverage bene�ts the project as well as QA personnel.

Advantages of Test Coverage for the Project

Helps prioritize testing tasks by distinguishing between critical and non-critical test cases
Helps attain 100% requirement coverage and prevents requirement leakage
Promotes traceability between generated test cases and de�ned requirements
Facilitates Impact Analysis
Useful in tracking all build cycles and �xes
Helps differentiate between releases, and re�nes requirements
Assists in ful�lling functionality coverage as per client’s needs
Greatly helps to de�ne the EXIT criteria
Augments precision in preparation of Test Closure Report

Clearly Test Coverage proves to be helpful to multiple stakeholders including the QA team and the

client, and hence the next section of this Whitepaper will delve into ways in which Test Coverage can

be optimized and testing time can be rationalized.

Calculating Test Coverage03

leakage of con�dential data; insecure data transmission; inadequate logging and monitoring

controls. A Banking App for example has very sensitive data and hence Risk Coverage is vital since

data leakage protection is absolutely non-negotiable. But there are also load testing risks that need

to be taken care of. A case in point is the demonetization period that saw a �urry of banking activity,

which needed Banking apps to support these unprecedented loads. It’s the same with e-commerce

platforms that need to provide for unusual digital traf�c when discounts and special sales are

announced.

Requirements Coverage

Requirement Coverage basically looks at which of the decided requirements have been tested. This

is important as the requirements as de�ned in the requirement document, have been arrived at

considering customer’s requirements and preferences. Delivering fancy features that don’t cater to

customers’ requirements will adversely affect app demand and usage. Furthermore, the requirement

document will form the basis for other departments to take forward their jobs too. The marketing

department for example, will design their ads and target groups depending on the features the app

is supposed to cater to. But if a developer incorporates topnotch unlisted features, and testers test

all of these, but overlook testing of even one speci�ed requirement, it will have uncomfortable

repercussions when customers seeking the untested feature buy the app, only to feel cheated when

they �nd it absent or ill-functioning. Hence requirement coverage is a very important part of Test

Coverage and can go a long way in enhancing user satisfaction.

OPTIMIZING TEST COVERAGE

PAGE 07 / 12

OPTIMIZING TEST COVERAGE WHILE MINIMIZING TIME

Test Coverage Optimization is a product of insightful planning, coupled with resource and time

optimization. Hence the �rst step is to review the carefully prepared ‘requirement document’, de�ne

timelines, and take stock of resource availability – both man and machine. The deadline for app

release becomes the sacrosanct target, and interim timelines must be set for meeting the various

milestones in the testing process. This will avoid delay in the app’s release date, and help clinch the

‘go-to-market’ race, which impacts app success.

It’s imperative to ensure that all tasks in the requirement document are assigned to the available QA

professionals, before the testing process begins, because a single mandatory task left out, has the

potential to bring to naught the diligent collective effort of the entire team. In order to reap learning

curve bene�ts, and achieve more in less time, at lower costs, it greatly pays to assign tasks according

to the skills of testers, assigning complex tasks to more experienced testers, and leaving the simpler

tests to average testers.

The Test Plan is an important part of optimizing test coverage and includes the following critical

areas:
1. Code Coverage
2. Data Focused Coverage
3. Platform Related coverage

OPTIMIZING TEST COVERAGE

PAGE 08 / 12

1. Code Coverage

The various parameters for ensuring optimal Code Coverage are tabled below for easy reference.

S. No. Coverage Type Particulars

1.

2.

3.

4.

5.

Functional Coverage
Verify all the functions and
database store procedures
related to the functionalities.

Statement Coverage Con�rm each line of code.

Condition Coverage Verify all the loops and
conditions in the code.

Path Coverage
Detect the potential paths from
the starting point in the code
which has been executed.

Entry and Exit Coverage
Con�rm how many
functions/procedures were
executed from start to �nish.

These parameters are inter-linked to various degrees. While the Path Coverage is inter-linked with

Condition, Statement and Entry/Exit Coverage, the Statement Coverage is independent of

Condition Coverage.

2. Data Oriented Coverage

Data Oriented Coverage checks if combinations of data values have occurred. It also seeks to test

some of the data using all possible values at least once. The domain de�nes which input and output

parameters are to be considered. Data Oriented Coverage can be achieved by writing coverage

groups, coverage points, and via cross coverage. It is applicable for white box as well as black box

testing. Data oriented testing includes the following:
Equivalence Partitioning
Boundary Value Analysis
Data Combination Testing (e.g. using pair-wise or n-wise testing)
Data Cycle Testing (using CRUD)
Data Flow Testing

3. Platform-related coverage

Platform-related coverage is vital to ensure test coverage for all platforms on which the app will be

used i.e. Web, Desktop, and Mobile. The high level of Mobile fragmentation compounds coverage

complexities as there are a substantial number of different OS versions available and operational in

the digital world. It is therefore necessary to pay detailed attention to this platform coverage to

ensure superior user experience across Mobiles and OS versions. Platform-related Coverage must

also ensure test coverage for various browsers.
Having reviewed test coverage in its diversity, it’s important to understand how to optimize test

coverage, within the limited available time and resources. The remaining part of this Whitepaper will

unfold this aspect, exploring it from three different angles.

OPTIMIZING TEST COVERAGE

PAGE 09 / 12

Test Coverage Optimization01
1. Strategies for Effective Test Coverage
2. Guidelines for Ef�cient Test Coverage Optimization
3. Techniques for Optimizing Testing Time

1. STRATEGIES FOR EFFECTIVE TEST COVERAGE

Speci�cation-based Test Coverage (Black Box Testing)

This strategy evaluates the app based on its requirements and speci�cations which are used to derive

test cases, without considering its internal structure or implementation details. The speci�cations

can be functional or non-functional and can be at different levels of abstraction i.e. user

requirements, system requirements, or design speci�cations. The focus is to write test cases that

cover as many scenarios described in the speci�cations, so that the software satis�es the intended

criteria; functions as intended; and meets user expectations.

Structure-based Test Coverage (White Box Testing)

Structure-based test coverage is a code-based testing strategy where the tester has knowledge of

the internal structure of the system. Test cases are written after analyzing the internal structure

based on code, branch, path, and condition coverage. It can be achieved with the help of Branch

Testing, Statement Testing, etc.

Experience-based Test Coverage
As the name suggests, the experience-based strategy relies on the tester's experience with testing,

development, similar applications, the same application in previous releases, and the domain itself.

Testers’ experiential knowledge forms the basis for designing the test cases.

OPTIMIZING TEST COVERAGE

PAGE 10 / 12

2. GUIDELINES FOR EFFICIENT TEST COVERAGE OPTIMIZATION

Resource Shuf�ing

Swapping tasks between testing teams helps to weed out any escaped bugs; and also promotes

knowledge sharing as well as team members’ involvement in the project.

Compatibility Coverage

Cross browser and cross platform testing is imperative to generate con�dence in the app’s

compatibility with diverse user preferences.

Ownership

Giving testers ownership for the modules assigned to them brings creativity, accountability and

increased responsibility to the testing process.

Deadlines

The app’s release date should be clearly set and this should be treated by all teams as inviolable; so

that in turn they can plan their own interim timelines and work to achieving the targeted release

date.

Communication

Effective communication between QA teams, and also between all stakeholders like the development

team, the app owners/client etc. is vital for optimizing test coverage, as it ensures that everyone is

on the same page throughout the SDLC, and that test coverage is proceeding in the right direction.

Requirements Traceability Matrix (RTM)

RTM helps con�rm that all requirements outlined for a system are linked at every point during the

veri�cation process, and also ensures that they are duly tested as per test parameters and protocols.

This greatly helps stakeholders take informed decisions for the release schedule.

Collaborative Tools

The right testing tool can greatly contribute to optimizing test coverage, as its speed and accuracy

optimize time, as well as improves quality; widens test coverage; and greatly increases ef�ciency of

the testing process.

OPTIMIZING TEST COVERAGE

PAGE 11 / 12

3. TECHNIQUES FOR OPTIMIZING TESTING TIME

It greatly pays to be familiar with the functionalities for the decided requirements and

speci�cations, in order to be able to evaluate and prioritize the tasks correctly

Choosing the right test automation tool is also important. It’s imperative to note that this is not

necessarily the best available tool in the market, but must be the one most suitable to the project

Prioritizing requirements into critical, major, and minor categories helps to optimally channelize

testing time and effort

Impact Analysis which assesses the impact of earlier releases can offer valuable time-saving

insights

Being aware of how a release is different from the previous one, can help identify critical

requirements more accurately and focus on maximum positive coverage

A checklist for all the basic interactions helps in including ef�cient tasks; and also ensures that

pending tasks are completed

Build Management is a good way to boost testing ef�ciency, as it helps stakeholders including

product owners, to keep track of all �xes, versions, and impact on the current releases

Creating test data directly from the database can bring ease and time-ef�ciency by reducing UI

interactions, and increasing testing speed and reliability

Another useful tip is to execute the most important business test cases on all browsers every

time; and run the low priority test cases on a single browser, using a different browser for each

test suite

It is hoped that these strategies, guidelines and techniques will help the reader successfully

optimize test coverage, achieving more in less time; to con�dently release the app right on

schedule

OPTIMIZING TEST COVERAGE

022 4050 8200

GET IN TOUCH

www.botmtesting.comsales@botmtesting.com

BOTm is the accelerator BOT for automated and manual testing of mobile applications -

developed for both Android and iOS devices.

OPTIMIZING TEST COVERAGE

CONCLUSION
Optimizing Test Coverage is an important strategy for app success, as it focuses on ef�cient and relevant

testing, within the constrained time and monetary budgets. These constraints mandate that testing should be

smartly done, emphasizing the qualitative rather than merely quantitative aspects. It is a proven fact, that

more testing does not necessarily mean better testing. What’s important is to have a well-thought out

strategy which widens ‘requirement-based test coverage’ within the given constraints, without compromising

on testing quality. This is the crux of what Optimizing Test Coverage is all about. A structured approach, which

targets ‘100% requirement coverage’ using effective testing methods and tools, will help achieve qualitative

testing despite the prevailing constraints. Using the right testing tool is a must for effectively optimizing test

coverage in minimal time.

For Mobile App Testing, BOTm offers features that rede�ne industry standards. Being a fully automated testing

platform that consistently incorporates the latest in technological advancements, BOTm is a proven tool that

optimizes test coverage.

Visit www.botmtesting.com and sign up for a Free Trial, to explore the spot-on features and

manifold bene�ts that BOTm offers.

PAGE 12 / 12

